
GPU Based Liquids and Surface Effects
Cauterization and blood flow for surgical simulation

Master of Science Thesis in the Programme MPALG

DANIEL KVICK

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, October 2011

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

GPU Based Liquids and Surface Effects
Cauterization and blood flow for surgical simulation
Daniel Kvick

© Daniel Kvick, October 2011.

Examiner: Ulf Assarsson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

[Cover: Blood flowing across the surface of a mesh]

Department of Computer Science and Engineering
Göteborg, Sweden October 2011

Abstract
Virtual surgery is a didactic tool used in order to train surgeons without risk to people or
animals. To achieve sufficient realism, these simulations require surface effects such as burn
marks from cauterization and bleeding from damaged vessels.

We propose efficient methods for generating such surface effects using the Graphics
Processing Unit. For each of the two effects, multiple solutions are proposed and discussed.
The chosen options are then motivated and explained in detail. Primary focus is placed on
simulation of fluid dynamics using particle systems.

In order to simulate cauterization, we propose a GPU-based method using floating-point tex-
tures to store temperature and tissue decay. These decay values are used to interpolate
between textures which represent different degrees of tissue damage. Efficient approximation
of the distance between surfaces and operating instruments is achieved using a three-dimen-
sional distance-field.

Blood flow is simulated on the GPU using a two-dimensional form of Smoothed Particle Hy-
drodynamics, projected into the texture-space of a mesh. Linked lists are used for efficient
representation of hash buckets. We find that our GPU-based version performs significantly
better than a CPU-based alternative. In the results section, interactive frame rates are achieved
with over 100,000 particles in the system.

GPU Based Liquids and Surface Effects
Daniel Kvick 3

Acknowledgments
Writing this thesis has been a serious undertaking and the greatest challenge of my academic
career, so far. Though nearly fifty pages were used to summarise the process and results, it
feels as if I have barely scratched the surface of what this project has entailed. Naturally, I
could never have completed such a task without the help of many kind individuals willing to
lend a hand.

First, I would like to thank Ulf Assarsson, without whom I would never have had the
opportunity to work on this project. I am especially grateful to him for referring me to
Surgical Science and agreeing to serve as examiner for my work there.

I feel the deepest gratitude towards the development team at Surgical Science as a whole, all
of which have provided me with constant support and shown more interest in my progress
than I could have hoped for. Because of them, I felt part of the team, despite being an intern
working on a separate project.

Of course, none of this would have been possible if it were not for Anders Larsson: my
supervisor and initial contact at Surgical Science. I am grateful to him for trusting me to work
there and arming me with the abundant literature needed for the daunting task of preparing an
initial assault on this project.

Many thanks go out to David Löfstrand, who stole countless hours of my time with
conversations far removed from what I should have been working on. In retrospect, those
chats provided me with the seeds for what seems like a majority of all bright ideas during this
project.

I also feel indebted to Göran Wallgren, who helped me keep track of my vectors and never
turned down an invitation for a bug hunt (of the software variety), regardless of how busy he
might have been.

Finally, I would like to thank Ine Lurquin, without whom I would never have managed to
complete this endeavour. Had it not been for her loving support and perceptive proof-reading
I would have gone stark raving mad no more than halfway through this venture.

As I finish this thesis, it is my hope that this humble collection of experiences and conclusions
may prove useful to others. Though I leave this project behind, I am proud to be a member of
the Surgical Science development team and I am looking forward to continuing my work on
integrating the developed system into LapSim.

– Daniel “Agentlien” Kvick

GPU Based Liquids and Surface Effects
Daniel Kvick 4

Table of Contents
 Abstract..3
 Acknowledgments..4
 Table of Contents...5
1 Introduction..7

1.1 Motivation..7
1.2 Problem statement...7

1.2.1 Burn marks..7
1.2.2 Fluid Simulation..8

2 Previous Work..9
2.1 Cauterization..9

2.1.1 Heat Equation..9
2.2 Fluid Simulation..9
2.3 Navier-Stokes Equations...9

2.3.1 Mathematical Background..9
2.3.2 Assumptions..10
2.3.3 Motivating the Equations..10

2.4 Eulerian Grid-Based..11
2.5 Smoothed Particle Hydrodynamics...11
2.6 Lattice-Boltzmann...12
2.7 Graphics Hardware...12

2.7.1 Programmable Stages..12
2.7.2 Floating-point Textures...13
2.7.3 Atomic Operations..13

3 Analysis..14
3.1 Method...14

3.1.1 Alternatives...14
3.1.2 Quick Tests...14
3.1.3 CPU – GPU Transitions..14
3.1.4 Results...15

3.2 Tools and Languages...15
3.2.1 C++...15
3.2.2 OpenGL...15
3.2.3 GLSL...16
3.2.4 CUDA...16
3.2.5 PhysX..16

3.3 Cauterization..16
3.3.1 Current Solution..16
3.3.2 Distance Field...17
3.3.3 Burn level..18
3.3.4 Temperature..18
3.3.5 Smoothing Issues..18

3.4 Fluid Simulation..19
3.4.1 Current Solution..19
3.4.2 Naïve Solutions...20
3.4.3 Fluid Dynamics...20
3.4.4 Smoothed Particle Hydrodynamics...20

3.5 Viscoelastic Fluid..21
3.5.1 Hashing of Particles..21
3.5.2 Simple Particle Steps..22
3.5.3 Application of Viscosity...22
3.5.4 Double Density Relaxation...22

3.6 GPU Implementation...24
3.6.1 Workflow..24
3.6.2 Data Representation..24
3.6.3 Vertex Shader..25
3.6.4 Neighbourhood Search..25
3.6.5 Particle Creation..25

GPU Based Liquids and Surface Effects
Daniel Kvick 5

3.6.6 Differences between Implementations..25
3.7 Hashing..26

3.7.1 Spatial Binning..26
3.7.2 Linked List Hashing..27

3.8 Surface Projection..28
3.8.1 Coordinate system..28
3.8.2 Texturing...29
3.8.3 Gravity..29

3.9 Particle Visualisation...29
3.9.1 Marching Squares...30
3.9.2 Position Smoothing...30
3.9.3 Hash Position vs. Real Position..30

4 Results..32
4.1 Realism..32

4.1.1 Cauterization...32
4.1.2 Fluid Simulation..33

4.2 Performance...34
4.2.1 Performance Measurements..35
4.2.2 GPU vs. CPU..35
4.2.3 Buffer Size..36
4.2.4 Particle Spawning...37
4.2.5 Density..38

5 Discussion..39
5.1 Cauterization...39

5.1.1 Shader Implementation...39
5.1.2 Texture Facilities...40
5.1.3 Temperature Modelling ...40

5.2 Fluid Simulation..40
5.2.1 Theoretical Models...40
5.2.2 Modification of Algorithms..41
5.2.3 Graphics Programming...41
5.2.4 Visualisation and Surface Projection..41

5.3 Utility Libraries...41
5.3.1 Level of Abstraction..42
5.3.2 Design Process..42

6 Future Work...43
6.1 Cauterization..43

6.1.1 Heat equation..43
6.1.2 Smoothing Issues..43

6.2 Fluid Simulation..43
6.2.1 Particle Lifetime..43
6.2.2 Adaptive Texture Mapping...43
6.2.3 Three-Dimensional Particles...44
6.2.4 Collision detection..44
6.2.5 Geometry Discontinuities...44
6.2.6 Obstacle Map..45
6.2.7 Improved Visualisation...45
6.2.8 Particle-specific Properties...46
6.2.9 Transfer of Properties..46
6.2.10 Coagulation...46

7 References...47

GPU Based Liquids and Surface Effects
Daniel Kvick 6

1 Introduction
Simulated surgery is an active research topic within computer science [1][2]. Accurate
simulations of surgical procedures help surgeons gain familiarity with many tasks and
practice many essential skills [3] without endangering people or live animals. In this thesis we
present solutions to the problem of creating visually pleasing surface effects for such
applications. The focus of this report is specifically on simulation of blood flow and burn
marks across tissue surfaces.

1.1 Motivation
Surgical Science is the company behind LapSim, a high-end simulated surgery application for
use in the training of surgeons. High visual quality is essential for believability of the
simulation and immersion for the user [4]. If the simulation does not look realistic, the willing
suspension of belief is broken. This makes it more difficult to take the training seriously,
leading in turn to lower performance and a less effective learning experience.

One important visual aspect which has been neglected in the LapSim system is surface effects
such as bleeding and burn marks. These effects provide important visual cues of the simulated
situation and are essential for the usability of the system. The current solutions are simple
vertex-based methods calculated on the Central Processing Unit (CPU). Their simple design is
inefficient and the simplistic visuals are often considered awkward and unrealistic by the
users. In order to improve visual quality, and thus immersion for the user, new methods were
developed to replace the current surface effects.

1.2 Problem statement
In this paper we describe the design of surface effects which have been implemented for
future integration into the LapSim system. While physical accuracy was always considered
when making design decisions, the primary focus was on performance and visual quality.
There is no point investing additional design time and runtime resources to achieve a level of
realism which can only be verified by numerical analysis of the simulation data. All methods
were implemented on the Graphics Processing Unit (GPU) to allow efficient rendering of
pixel-based effects. The goal was to find visually pleasing results which could be efficiently
implemented on the GPU.

The two key surface effects are burn marks left by the operating instruments and
haemorrhages caused by damage done to tissues or blood vessels. The following subsections
describe these effects and provide a basic introduction to our approach when implementing
them. All implementations have been made in separate applications and have yet to be
integrated into LapSim.

1.2.1 Burn marks
Cauterization is used in order to minimize bleeding when cutting through tissue or severing
blood vessels. When cauterizing tissue, the colour gradually changes. This shifting colour
provides a visual cue of the state of the tissue. This helps surgeons achieve the desired results
without causing excessive damage to the surrounding tissue.

The cauterization simulation was split in two passes. In the first pass, the distance to the
instruments is measured using a distance-field (Section 3.3.2). If this distance is close enough,
the temperature of the tissue is increased. Otherwise, the temperature is decreased. If the

GPU Based Liquids and Surface Effects
Daniel Kvick 7

temperature is high enough, burn level of the tissue is increased. In the second pass, the burn
marks are visualized by using the burn level to interpolate between multiple textures
representing different tissue states.

1.2.2 Fluid Simulation
During surgery, the slightest mistake can damage tissues and blood vessels. When this
damage is severe enough, it often results in bleeding. Once haemorrhaging has occurred, it is
important that the surgeon notices quickly and reacts accordingly. Since bleeding is such a
ubiquitous phenomenon, the visual quality of these haemorrhages is important.

Many methods of simulating blood flow were evaluated. The final decision was to use a
particle-based simulation where particle movements are simulated in two dimensions. This
particle plane is then projected across the tissue surfaces. The resulting particle positions are
smoothed using a Gaussian blur and rendered with a blood texture.

GPU Based Liquids and Surface Effects
Daniel Kvick 8

2 Previous Work
2.1 Cauterization
Cauterization for virtual surgery is such an uncommon and specific application that it was
difficult to find related research without first knowing how to solve the problem itself.
Inspiration was mainly drawn from the current solution in LapSim and existing ideas for
improvement thereof. In order to achieve realistic results, videos of cauterization were studied
and the physics behind heat transfer was explored.

2.1.1 Heat Equation
The heat equation was first described by Joseph Fourier in the early 19 th century. The idea
behind it is that the change in heat depends linearly on the Laplacian (Section 2.3.1) of
temperature [5].

∂u
∂ t

=α∇2 u

In this equation, u stands for temperature, t denotes time and α is a positive constant. The heat
equation was originally developed to model transfer of heat within a system. However, it has
turned out that this same equation models many different phenomena in physics.

2.2 Fluid Simulation
Many different systems have been created for describing fluid motion. The most accurate
known model is the Navier-Stokes equations and was developed in the eighteenth century [6].
In more modern times, fluid dynamics has become a common problem within areas such as
scientific simulations [1] and movie productions [7]. Consequently, many different systems
have been developed for simulating fluids. These systems vary widely in the underlying
method and the most interesting ones are described below.

2.3 Navier-Stokes Equations
Developed independently by Claude-Louis Navier and George Gabriel Stokes, the Navier-
Stokes equations describe the motion of fluids by modelling their velocities as a vector field
[8]. The Navier-Stokes equations can be derived from Newton's laws.

2.3.1 Mathematical Background
In order to explain the motivation behind the equations, one must first understand the
underlying concepts. The most important of these concepts is the Del operator and how it is
used to calculate gradient and divergence. The Del operator is a tuple of operators, used to
refer to a set of closely related vector operations [9].

 ∇= ∂
∂ x1

, , ∂
∂ xn

One use of this operator is to calculate the gradient of a function. For any real-valued function
f(x1, …, xn), the gradient of f is written as the product of Del and f.

∇ f = ∂ f
∂ x1

, , ∂ f
∂ xn

GPU Based Liquids and Surface Effects
Daniel Kvick 9

This results in a vector field describing the greatest directional derivative. Another use of the
Del operator is to calculate divergence. Divergence of a vector field is a measurement of the
outward flux. This is calculated as the dot product between the Del operator and the vector
field.

∇⋅F= ∂ f
∂ x1

 ∂ f
∂ xn

A common combination of these uses is the Laplace operator, ∇2=∇⋅(∇ f) which
calculates the divergence of the gradient of f.

2.3.2 Assumptions
When using the Navier-Stokes equations, one must choose which assumptions to make about
the fluid and its behaviour. A useful set of assumptions is that the fluid is Newtonian and
exhibits incompressible flow. That a fluid is Newtonian means that its viscosity is not
dependent on the amount of force applied to it. These assumptions simplify the Navier-Stokes
equations somewhat [8].

Technically, a fluid exhibiting incompressible flow is not the same as an incompressible fluid.
The difference is that incompressible flow only demands constant density on an infinitesimal
scale. An incompressible fluid, on the other hand, exhibits constant density within any finite
volume of the fluid. For simplicity, however, we will refer to the property of incompressible
flow as incompressibility. An equivalent statement to incompressibility is that the divergence
of velocity is zero. To understand this, think about the meaning of divergence when it comes
to velocity. Divergence of a vector field is equal to its flux. A non-zero flux means the amount
of fluid moving into an infinitesimal volume is not equal to the amount of fluid moving out of
it. From this, it follows directly that the density of this volume is changing.

The naïve solution to including the above constraints would be to add them as separate
formulas in our system of equations. While this is theoretically valid, it is more elegant to
reformulate the original equations. When it comes to incompressible Newtonian fluids, the
resulting formula is actually simpler than the original. Assuming an incompressible
Newtonian fluid, we get the following form for the Navier-Stokes equations [8].

 ∂u
∂ t

u⋅∇ u=
−∇ P

ρ
ν ∇2 u f

Here, u represents velocity, t denotes time, P stands for pressure, ρ is density and ν is
viscosity. The last term, f, represents all other forces acting on the matter which makes up the
fluid. The most notable of these forces is gravity.

2.3.3 Motivating the Equations
The above equation describes the motion of incompressible Newtonian fluids. From a first
glance, however, this is not obvious. The formula consists of five terms, at least three of
which require a bit of effort to understand. Each of these terms represents a separate aspect of
the fluid behaviour, making it relatively easy to explain them in isolation.

GPU Based Liquids and Surface Effects
Daniel Kvick 10

∂u
∂ t

The first part of the formula describes the acceleration of the fluid. This is simply the
derivative of velocity with respect to time.

u⋅∇ u=u⋅∇ u =u⋅∇ u

The second part describes convection, which in practice means the transfer of velocity to
nearby coordinates of the continuum. Convection is described as the dot product of velocity
and its gradient. Equivalently, this formula can be read as a scalar multiplication between
velocity and its divergence. Seen from this perspective, the motivation is that the divergence
of velocity describes the outward flux of the fluid as a rate of change. Multiplying this by the
original velocity supplies the correct direction and magnitude.

−∇ P

The third term describes the effect of fluid pressure. The gradient of the pressure describes the
net pressure as a vector field. Negating this field will give us the resulting force field. As a
last step, dividing these forces by fluid densities gives a measurement of how strongly the
fluid is affected by the pressure.

ν ∇2 u

As f is already explained above, the final term to motivate is viscosity. The viscosity of a fluid
means its ability to withstand shear forces. On a particle level, these shear forces constitute
friction between nearby particles. The viscosity constant ν is simply a measurement of how
viscous the fluid is. The factor ∇2 u=∇⋅(∇ u) is the Laplacian of the velocity field. The
gradient of velocity is a vector field describing relative velocities across the continuum. The
divergence of this field thus measures the variation in these relative velocities. The greater
this variation, the more internal friction will occur.

2.4 Eulerian Grid-Based
Eulerian grid-based methods are similar to the Navier-Stokes equations in that they model the
fluid using properties spanning a system. The difference is in that Eulerian Grid-Based
methods describe fluids as a grid of properties, rather than a continuum. This simplifies the
procedure by treating the fluid within a cell as a single discrete entity. [6]

2.5 Smoothed Particle Hydrodynamics
One of the most popular approaches to fluid dynamics is Smoothed Particle Hydrodynamics
(SPH). In this method, fluids are treated as a collection of particles. The behaviour of the fluid
as a whole is then determined by the interactions of these individual particles. Every particle
is assigned a static mass as well as a number of dynamic properties. These properties are
smoothed across nearby particles by the following equation [10].

GPU Based Liquids and Surface Effects
Daniel Kvick 11

A I r =∫ Ar ' W r−r ' , hdr '

This defines property A using an integral over the whole space. In this formula, r and r' are
coordinates indicating particle positions. The kernel function W is mostly taken to be the
Gaussian function. In practical applications, the integral is mostly approximated by a
summation over all particles.

2.6 Lattice-Boltzmann
An approach similar to both grid-based methods and SPH is the Lattice-Boltzmann method.
The simulated space is divided into a lattice over which particles collide and propagate. This
allows for direct modelling of how a single particle interacts with its immediate surroundings.
It has been shown that the Navier-Stokes equations can be derived from the discrete Lattice-
Boltzmann equations, giving a hint towards their ability to achieve statistically viable results
[11].

For further reading on the topic of fluid simulation, please see “Fluid Simulation for
Computer Graphics” by Robert Bridson [12].

2.7 Graphics Hardware
Over the last few years, the layout and inner workings of modern graphics hardware has
changed dramatically. The result is that consumer-grade graphics cards now consist of an
architecture for highly parallel general-purpose computation capable of both single- and
double-precision floating point operations [13][14]. While some parts of the graphics pipeline
remain fixed-functionality, the most essential stages can be programmed using specialized c-
style languages such as C for Graphics (Cg) and the OpenGL Shading Language (GLSL)[15].

2.7.1 Programmable Stages
The graphics pipeline consists of a series of stages, each with its own purpose and
functionality. While some of these stages are fixed functionality, others are programmable. A
shader is a piece of software to be executed during one of these programmable stages [13][14]
[15]. The word shader comes from their main use: to describe lighting equations. A set of
shaders to be executed together is called a shader program. In the most basic programmable
architectures, there are two stages: the vertex stage and the fragment stage.

For every vertex which passes through the graphics pipeline, the active vertex shader is
executed. This shader is mainly responsible for setting up output position and passing vertex-
specific data to the fragment shaders. Once all vertices of a geometric primitive have been
processed, the surface area of the primitive has to be rendered. This area is split up into
discrete units, called fragments, to be processed independently in parallel by the fragment
shader. During this stage, the final output data of the shader program, typically a colour, is
calculated [15].

All shader programs must contain vertex and fragment shaders. While both vertex and
fragment shaders have a well-defined original purpose within computer graphics, they can in
effect be used for general-purpose calculations. The user can control both the expected input
and output of each shader, as well as freely programming the handling of this data. On newer
graphics hardware, further stages have been introduced. These stages, such as geometry and
tessellation, are considered optional [15].

GPU Based Liquids and Surface Effects
Daniel Kvick 12

2.7.2 Floating-point Textures
One of the most interesting changes that have taken place within recent years is the ability to
store floating-point data in textures. This allows for efficient transfer of large amounts of data
to and from shaders. Another advantage is that, by using floating-point textures to store both
input and output, multiple passes can operate on the same input, as well as the output of
previous passes, without having to send any data over the graphics bus after the first pass.

2.7.3 Atomic Operations
Another invaluable tool is the ability to perform atomic read-write operations from within a
shader. Atomic read-write operations provide a way for shader threads executing in parallel to
safely use the same memory. A simple technique which beautifully demonstrates the power of
this extension was presented by Yang and McKee in the presentation "Real-Time Order
Independent Transparency and Indirect Illumination using Direct3D 11" [16]. By atomically
reading and overwriting data in the framebuffer, a set of threads cooperate in building a linked
list of fragment colours to combine for final output colour. Each thread writes a pointer to
some unique memory area and writes, in that area, the fragment data and the data they
overwrote. In doing so, each thread will effectively write a pointer to the data written by the
last thread to touch the same memory. While presented as a way of performing order-
independent alpha-blending, this is a general technique and can be used for many different
purposes.

Currently, atomic operations are only available on 32-bit integer types [17]. While this does
allow for thread-safe manipulation of pointers and counters, it is a serious limitation. There is
no efficient way to atomically operate on floating-point values, let alone vectors. While some
problems can be solved by atomically updating pointers to vectors, this approach quickly
grows complex in both time and memory. Imagine that a series of operations need to be
performed by different threads on the same vector. One could create a stack of operations per
vector, and then execute these in a second pass. However, if the modified vectors are used in
operations on other vectors, a dependency graph needs to be built. Then, each layer of this
dependency hierarchy would require a separate rendering pass. It is easy to see that such a
scheme quickly grows beyond affordable complexities.

GPU Based Liquids and Surface Effects
Daniel Kvick 13

3 Analysis
This section details the theory of the problems, the method followed and the alternative
solutions considered. In presenting the alternatives, our design choices during the
development process are identified and motivated.

3.1 Method
3.1.1 Alternatives
The main challenge of the project was to find and evaluate potential solutions for each
problem. There are many viable approaches, each with a unique set of advantages and
disadvantages. In order to ensure a sound design of the system as a whole, multiple options
must be considered and evaluated when designing each component. These alternatives were
mainly taken from research papers, which often focus on certain parts of the presented
solution while leaving others underspecified. This requires another level of investigation to
determine how to implement the underspecified components. Furthermore, the specific
context of a project sometimes necessitates alternative solutions or variations on chosen
techniques. Specifically, the setting of a GPU implementation often requires alternative
solutions to problems. As a result, this report covers a wide array of techniques and variations
thereof which were evaluated during the course of the project.

3.1.2 Quick Tests
Implementing a new technique in a serious application requires a lot of work with integration
of components and overall design. These aspects, while important, make it very difficult to
learn and familiarise oneself with new technology or algorithms; the restrictions of
interoperability often cause issues which draw focus away from the new technique itself.

In order to alleviate these issues, most new techniques were first tested using what we call
quick tests. The idea is that one does not immediately try to apply the technique to the actual
problem for which it was chosen. Instead, the focus is on a dummy problem which is easier to
solve. A quick test can then be used to learn and verify ones understanding of the technique at
hand. One important aspect of quick tests is that they are fast and simple to implement.
Consequently, their design is often naïve and unfit for serious applications. Once a quick test
is completed, it is thus important that it is removed from the system rather than used as a base
for further implementations.

Whenever possible, algorithms and technologies were investigated using quick tests before
integration into the main application was attempted. For example, before implementing the
linked-list particle hash function (section 3.7.2), the previously implemented hash function
(section 3.7.1) was rewritten using image loads instead of texture lookups and with an image
store replacing the final output of the fragment shader. This provided a simple application of
the image extension, without having to worry about linked lists or atomic operations.

3.1.3 CPU – GPU Transitions
While the parallel nature of the GPU is the main source of its power, it also complicates
implementations. Implementations for the CPU may be significantly slower, but they are also
easier to formulate and test. Thus, certain algorithms were first implemented on the CPU and
later transferred to the GPU. This has an additional advantage when implementing multi-pass
algorithms. With a working CPU implementation available, one can transfer the algorithm
one pass at a time to the GPU. This prevents having to write the entire code at once and

GPU Based Liquids and Surface Effects
Daniel Kvick 14

makes it easy to verify the correctness of each step in isolation. This was particularly helpful
when implementing the GPU-based particle simulation.

3.1.4 Results
An important aspect of the methodology is how to measure and present results. Implemented
features are simple to describe in terms of their motivation and practical implications.
Describing performance results, however, is a more involved process. First, performance
indicators have to be identified. Then, tests must be designed in order to measure these
indicators. Finally, the gathered results need to be presented in an intuitive manner.

In the context of real-time rendering, the most interesting performance indicator is frame rate.
Unlike theoretical measurements, such as big-O notation, the frame rate tells exactly how an
implementation behaves in practice. The drawback of using frame rate is that it is highly
dependent on the used hardware. Even graphics cards with similar architecture may produce
drastically different behaviour due to varying number of processing elements and cache sizes.
Consequently, it is not viable to directly compare results attained on different hardware.
Preferably, one would still want to supply performance data over a wide range of hardware.
Doing so would help indicate the performance of the method itself, rather than that of the
system used. For practical reasons, however, all performance measurements for this report
were generated on the same hardware (Section 4.2.1).

When performing a test, frame rates are continuously tracked by tallying the amount of
frames per second (FPS). The average of these frame rates is then calculated and saved into a
performance log. The tallying of FPS is done using a simple frame counter and a time
variable. At the beginning of each frame, the frame rate is incremented. Next, the current
clock time is queried and compared to the value stored in the time variable. If the difference
between these is larger or equal to a second, the frame rate is saved, the frame counter is reset
and the time variable is set to the current clock time.

3.2 Tools and Languages
The main focus of this project was on practical implementations. As such, the choice of
development tools was central to the success of the project. Many alternatives were
investigated and the ones deemed most interesting are described below. This includes
alternatives used in the end, as well as those which showed promise, but were ultimately not
chosen.

3.2.1 C++
With the ability to mix high-level object-orientation with highly optimised low-level code
[18], C++ is an invaluable tool for graphics programming. As such, Surgical Science uses
C++ to develop their products. For this reason, other programming languages were not
considered for the main platform. All CPU-based implementations described in this report
were written in C++.

3.2.2 OpenGL
The Open Graphics Library (OpenGL) is a cross-compatible framework for programming
graphics. It is currently developed by the Khronos Group [19]. The entire specification of
OpenGL is free and open to the public. Using OpenGL and its extensions provides access to
most features available on modern graphics cards and a large set of utility functions to
facilitate their use. All CPU-based implementations described in this report were written using
OpenGL.

GPU Based Liquids and Surface Effects
Daniel Kvick 15

3.2.3 GLSL
The OpenGL Shading Language (GLSL) is a language for programming shaders. GLSL is
developed by the Khronos Group and is designed in tandem with the OpenGL functionality
for handling shaders [19]. This simplifies interoperability and provides a common language
for describing the interface between shaders and the graphics library. Most GPU-based code
implemented for this report was written in GLSL.

3.2.4 CUDA
CUDA is a proprietary language for programming on the GPU [13][14]. It requires the use of
an Nvidia card with CUDA capabilities. The original intention behind CUDA was to allow
researchers and developers to exploit the parallel processing power of the GPU without
having to learn how to use a graphics library. It simplifies GPU computing by removing the
need to disguise all data processing as graphics operations. Due to its powerful design and
recent popularity, CUDA programming was explored as an alternative to using traditional
shading languages such as GLSL. However, it was concluded that this led to little advantage
when used in graphics applications. Interoperability between CUDA and OpenGL was found
to incur serious overheads. For this reason, CUDA was only used for some of the initial quick
tests.

3.2.5 PhysX
Nvidia PhysX is a proprietary library for performing physics calculations on the GPU and
requires the use of an Nvidia card with CUDA capabilities [20]. PhysX allows for GPU
simulation of physics on rigid bodies, cloths and fluids. In these simulations, user-defined
data can be bound to physics objects and collision resolution can be handled on the GPU, in
software or a combination of both. PhysX was considered as a base for the blood flow
simulation. However, implementing particle physics ourselves meant increased adaptability
and full access to the implementation details. One specific constraint of PhysX which was
deemed undesirable was the inability to simulate interactions between different fluids.
Consequently, we did not use PhysX in the final implementation.

3.3 Cauterization
The creation of burn marks was the first of the two main tasks. The idea was to make a system
for visualizing the state of tissue which has been cauterized by the surgeon. While visual
quality was a priority, we also wanted to approximate the mechanism of cauterizing as
realistically as possible.

3.3.1 Current Solution
In LapSim, the visual geometry contains a low-resolution skeleton mesh. This skeleton is
called the dynamic mesh. All collisions are calculated against the edges of the dynamic mesh,
rather than those of the visual geometry. Each vertex in the dynamic mesh is bound with
weighted edges to the nearby vertices of the visual geometry. In this way, each skeleton edge
has an indirect weighted connection to the nearby vertices of the visual mesh. When a hot
instrument collides with an edge of the dynamic mesh, the heat of the instrument is scaled
using these weights and distributed to nearby vertices. This heat is also scaled by the size of
the time step and the resulting value is added to a burn level which is kept for each vertex of
the visual geometry. When drawing the geometry, this level is used as colour per vertex and
interpolated across the triangles. The resulting visuals are shown in Figure 1.

GPU Based Liquids and Surface Effects
Daniel Kvick 16

Figure 1: Burn marks (grey) in LapSim across the surface of a fallopian tube.

There are multiple issues with this technique. Firstly, it acts on vertices, which means it is
only as detailed as the mesh itself. Secondly, it is implemented on the CPU, which makes it
expensive to perform any advanced calculations per pixel. Probably the worst issue, however,
is the reliance on the dynamic mesh. Since cauterization is done against the skeleton inside
the geometry, burning will mostly leave the same mark on both sides of the surface,
regardless of how thick the tissue is supposed to be. In order to alleviate these issues, a better
solution was sought.

3.3.2 Distance Field
A distance field is a texture where each texel indicates the distance to the nearest point on a
surface [21]. In LapSim, distance fields are three-dimensional textures, centred on the origin
of an instrument, and approximate the distance to the surface of that instrument. In
instruments with moving parts, each part has its own distance field. The values in a distance
field are positive for points outside of the instrument and negative inside the instrument.
Given a point in world space, the distance to an instrument can be found in three steps:
transform the point using the inverse matrix of the instrument, scale the coordinates to texture
space and look up the value at the resulting texture coordinate of the distance field. Points
outside of the distance field are first projected onto the surface of the distance field. The
resulting value is then set to the sum of the read value and the distance between the original
point and its projection. Such an approximation is efficient and generates results of sufficient
precision for the actual applications of these distance fields.

Currently, distance fields in LapSim are used to calculate deformations of dynamic meshes.
When a vertex of a deformable mesh ends up inside an instrument, the instrument’s distance
field is used to find how far the instrument has intruded into the mesh. Ray marching is then

GPU Based Liquids and Surface Effects
Daniel Kvick 17

performed over the distance field to approximate the nearest point on the instrument surface
in the direction of the intrusion. The result of this ray marching is used to translate the vertex,
thus deforming the mesh with the instrument.

In our solutions, distance fields are used to calculate, per pixel on a surface, the distance to a
hot instrument. When this distance is small enough, cauterization occurs. At first, the distance
was used to scale the severity of the burn; however, a binary method which simply burns or
not was found to work better in practice.

3.3.3 Burn level
During the cauterization of tissue, the colour changes continuously as the tissue degrades.
When a surgeon begins to cauterize tissue, the tissue begins to whiten. Once the burn is severe
enough, the tissue rapidly turns black. This level of tissue decay is stored in a floating point
texture where values, called burn levels, represent the severity of the burn across a tissue
surface. By choosing the resolution of this burn level texture, one can effectively determine
the resolution of the cauterization algorithm across that surface. Using this burn level, one can
then visualize the burn by interpolating between textures which represent different stages of
the cauterization process. In our solution, three tissues were used: one representing healthy
tissue, a whitened texture representing mild burns and a dark texture representing badly
damaged tissue.

Since surface points are mapped to texture coordinates in the cauterization algorithm, it is
vital that texture coordinates are unique. If two distinct surface points map to the same texel,
burning around either will affect both. Consequently, meshes which do use tessellating
textures or repeated coordinates must be assigned a separate set of texture coordinates for use
in the cauterization algorithm. Alternatively, one can make the artist responsible for avoiding
such conflicts in texture mapping and use the same texture coordinates for both skinning and
cauterizing.

3.3.4 Temperature
In reality, the instruments used for cauterizing do not directly damage the tissue. Instead, they
induce a current which increases the temperature of the tissue. Sufficiently high temperatures,
in turn, cause damage. This has implications which affect the way cauterization works in
practice. For one, it takes a while before the temperature is high enough to cause burn marks.
Additionally, the rate of decay increases throughout the duration of the cauterization. Finally,
temperatures spread across tissue surfaces.

Temperature can be represented by a second floating point texture. Cauterizing is then
modified so that it increases temperature, rather than directly affect the burn level. At high
enough temperatures, burn level is increased in a way which depends linearly on the
temperature. The realism of this heat model can be improved further by smoothing heat values
across neighbouring texels. Doing so gives the burn wounds a smooth look, rather than a
sharp edge. It also leads to temperatures spreading across the surface of a mesh.

3.3.5 Smoothing Issues
Most calculations described so far are done independently per pixel and require only the
uniqueness of texture coordinates across the surface of a mesh. In fact, only the spreading of
heat via smoothing requires knowledge of surrounding pixels. Thus, the algorithm is entirely
insensitive to discontinuities or seams in texturing when smoothing is disabled. Since
smoothing is done using a straightforward texture lookup, heat transfer across texture seams

GPU Based Liquids and Surface Effects
Daniel Kvick 18

gives rise to artefacts such as discontinuities in the burn marks. Possible solutions to these
issues are discussed in section 6.1.2.

3.4 Fluid Simulation
Our largest task was to develop a new method for fluid simulation which could create detailed
and realistic results without incurring significant costs in time and memory. As the current
solution is CPU-based and LapSim itself is CPU-bound, it was deemed affordable to run a
more complex simulation on the GPU.

3.4.1 Current Solution
At present in LapSim, bodily fluids are simulated per vertex of the visual geometry. When the
amount of fluid in a vertex exceeds a certain threshold, part is transferred to some
neighbouring vertices. To ensure that fluid does not flow against gravity, it is only transferred
along an edge if the dot product of this direction and the direction of gravity is non-negative.
When drawing, these fluid values are used to set a colour per pixel which is then interpolated
across the surfaces. Vertices with fluid are given an alpha value of 1 while others are given an
alpha of 0. This way, fluid colours are interpolated smoothly across triangles.

Figure 2: Fluids in LapSim. Left: Blood covering the liver and bile leaking onto the gall bladder. Right: Blood
running across a severely damaged fallopian tube.

Unfortunately, this method still suffers from issues related to its coarse nature. In detailed
areas, the small triangles effectively cancel out the interpolation between alpha values, as it is
done over such a short distance. This gives rise to sharp edges. Surfaces composed of larger
triangles also suffer from visual artefacts: the blood forms large polyhedra with visibly
straight edges. As blood flows from one vertex to another, these edges appear to jump forward
in discrete steps.

GPU Based Liquids and Surface Effects
Daniel Kvick 19

3.4.2 Naïve Solutions
Our first attempt to simulate blood across the surface of a mesh was a simple pixel-based
method relying entirely on dot products and other vector operations on the orientation of
surfaces and the amount of blood present at neighbouring pixels. After a few quick tests, it
was determined that such methods easily produced visually pleasing results, but suffered from
significant issues. Most evident was the numerical instability as the amount of blood tended to
either diverge towards infinity or converge to nothing. Furthermore, the models themselves
were arbitrary and lacking any serious motivation. Finally, this type of solution provided little
room for future improvements. It was thus decided that a more advanced and well-motivated
approach was necessary. Our attention then turned towards the field of fluid dynamics.

3.4.3 Fluid Dynamics
Currently, the most accurate model of fluid dynamics available is the Navier-Stokes
equations. These equations treat the fluid as a continuum, and can be used to find the velocity
and pressure of any point inside the fluid. However, solving these equations directly is not
efficient enough for real-time simulations. Another obstacle when using the Navier-Stokes
equations is that they are not well-understood. In fact, the Clay Mathematics Institute is
currently offering a million U.S. dollars to anyone who can prove whether or not smooth
solutions always exist that satisfy these equations [22].

There are multiple other Eulerian methods, in particular grid-based variants; however, they
typically suffer from complexities beyond what is practical for real-time simulation.
Eventually, it was determined that the best approach to simulating fluids would be to use
some form of a particle system.

3.4.4 Smoothed Particle Hydrodynamics
One of the best known particle-based approaches to simulating fluids is Smoothed Particle
Hydrodynamics (SPH). With recent developments in computational hardware, it has become
popular for use in games. In fact, PhysX uses a form of SPH to simulate its particle systems
[20]. We thus considered the possibility of using such a proprietary physics library for fluid
simulation. Ultimately, we decided that the best choice would be to implement a particle
system ourselves.

The basic idea behind SPH is that particle properties depend on the properties of surrounding
particles. Each particle property A is determined by the following formula [10].

A sr =∑
b

mb

Ab

pb
W r−rb , h

In this equation, each particle b has position rb, mass mb, pressure pb and a value Ab of
property A. The value h represents the interaction radius of a particle. Using this formula, one
can substitute W for any desirable kernel function, making it easy to adapt and extend a
chosen implementation. Since the actual simulation of a particle system is done in terms of
property changes over time, it is important that these kernel functions are differentiable. The
most commonly used kernel functions are the Gaussian and cubic splines.

There are a number of favourable properties to SPH. Probably the most interesting is a
guaranteed conservation of mass, which follows directly from the use of distinct particles with
invariable mass. Many implementations also use constraints to ensure incompressibility of the
fluid. However, these constraints require complex calculations which were deemed too

GPU Based Liquids and Surface Effects
Daniel Kvick 20

computationally expensive for our simulation. However, the basic approach was still seen as
the best alternative for real-time fluid simulation.

3.5 Viscoelastic Fluid
While incompressible SPH is proven to behave well, it requires solving complex, and thus
expensive, equations per particle. The approach which was eventually chosen for particle
simulation is based on the article Particle-based Viscoelastic Fluid Simulation by Clavet et al.
[23] and is another variation on SPH. In this method, density is calculated differently and the
incompressibility constraint is approximated, rather than enforced. The algorithm proposed in
the article consists of nine steps.

1. Hashing of particles

2. Application of gravity

3. Application of viscosity

4. Application of velocity

5. Adjustment of springs

6. Application of spring displacements

7. Double density relaxation

8. Resolution of collisions

9. Updating of velocity

Steps five and six handle virtual springs between particles; these springs have a rest length
which changes with time towards their current length. Together, these two steps help simulate
the elasticity and plasticity of certain fluids. After experimenting with different variations on
the algorithm, it was determined that these effects were not desirable for the application of
interest. Consequently, these two steps were discarded in order to improve performance.
We also decided that the step for resolving collisions was not relevant, as our implementation
projects the particles onto geometry surfaces (Section 3.8).

3.5.1 Hashing of Particles
Several steps of the algorithm require smoothing of properties from neighbouring particles.
Theoretically, these properties should be smoothed over all particles in the system; a
procedure which implies at least an O(n2) complexity. This is clearly too costly as particle
systems often contain tens of thousands or hundreds of thousands of individual particles.
Furthermore, the influence two particles exert on each other depends on the distance between
the two. This means that distant particles have little impact on each other in practice and may
be ignored without noticeable effect. In order to make use of this observation, we want an
efficient method for identifying the neighbours of a particle without having to loop over all
other particles. This is solved via hashing of particle positions. Using a spatial hashing
algorithm, the space of the particle system is divided into a grid of hash buckets containing
particles.

GPU Based Liquids and Surface Effects
Daniel Kvick 21

3.5.2 Simple Particle Steps
Application of gravity, application of velocity and velocity update are straightforward steps
performing simple arithmetic operations per particle. Gravity updates particle velocities
according to Δ v⃗= g⃗ ΔT with g the gravitational vector and T representing time. Similarly,
velocity updates positions according to Δ p= v⃗ ΔT . The final step of the algorithm updates
particle velocities to reflect the actual particle movements during the frame. In the paper on
viscoelastic fluids, this was done according to

v= Pnew−Pold T

where Pold is the position at the start of the iteration and Pnew is the resulting position at the
end of the iteration. However, in order to model traction against the surface on which particles
are simulated, an inertia term I is introduced. As a final improvement, the magnitude of each
component is clamped to a maximum value vm in order to ensure reasonable particle
velocities. With these modifications in place, the following equations model the velocity
update for each component i.

 P i=Pnew i
−Pold i

v i={vm ,
−vm ,
I P i ,

 P ivm

 P i−vm

−vm≤ Pi≤vm

3.5.3 Application of Viscosity
Viscosity is the first effect applied which uses the particle hashing to efficiently find
neighbouring pairs. For any two particles within interaction distance of each other, the inward
radial velocity is calculated according to u=(v i−v j)⋅r̂ij where vi is the velocity of particle i
and r̂ ij is the normalized vector from i to j. If this value is above zero, the viscosity effect is
applied as a pair of impulses between the two particles.

First, the impulse I =Δ t(1−q)(σ u+βu2) r̂ij is calculated where q is the distance between i
and j. The constants σ and β are used to scale linear and quadratic terms respectively. The
impulse applied on particle j is I / 2 and similarly, the impulse –I / 2 is applied on particle i.

3.5.4 Double Density Relaxation
Incompressibility is approximated by calculating the fluid density around each particle and
performing displacements which work towards achieving the rest density. For each particle,
the pressure acting on it is calculated by looping over its neighbours and keeping a running
density sum. The density of a particle depends on the number of and distance to its
neighbours.

GPU Based Liquids and Surface Effects
Daniel Kvick 22

P i=k−ρ0 ∑
j∈N i

1−
r i j

h
2

Here, ρ0 stands for rest density and rij is the distance between particles i and j. The set N(i) is
the set of all neighbours to particle i. The pressure constant k is used to scale the measured
density. This step relies on the assumption that all particles have equal mass. Next, the
calculated pressure is used to apply a displacement on each neighbour. The magnitude of this
displacement is proportional to the distance between the particle and its neighbour.

Dij= T 2 P i1−
rij

h
 r ij

In order to avoid clustering of particles, a second pressure term, near-pressure, is introduced.
The near-pressure acts as an exclusively repulsive force which ensures that the particles of
low-viscosity fluids do not form tightly packed clumps by pulling strongly on a small set of
neighbours.

P i
near=k near ∑

j∈N i
1−

r ij

h
3

The near-pressure constant knear is analogous to k for pressure. The following algorithm for
calculating pressures and applying the resulting displacements is used in the original paper
[23].

1.for each particle i
2. ρ := 0
3. ρnear := 0
4. // compute density and near-density
5. foreach particle j in neighbors(i)
6. q := ρij/h
7. if q < 1
8. ρ := r+(1-q)2
9. ρnear := ρnear +(1-q)3

10. // compute pressure and near-pressure
11. P := k(ρ-ρ0)
12. Pnear := knearρnear
13. dx := 0
14. for each particle j in neighbors(i)
15. q := rij/h
16. if q < 1
17. // apply displacements
18. D := Dt2(P(1-q)+Pnear(1-q)2) r ij

19. xj := xj+D/2
20. dx := dx-D/2
21. xi := xi+dx

GPU Based Liquids and Surface Effects
Daniel Kvick 23

An important thing to note is that both double density relaxation and the viscosity step apply
correctional impulses directly on particles while still looping over them. This gives different
results on the CPU and GPU. On the CPU, the behaviour of this method is difficult to predict
precisely as it depends on the order in which the particles are processed. When calculating on
the GPU, this becomes even more complex. Not only does it depend on the order in which
particles are processed; it also depends on which particles are processed in parallel. This
means the results may vary between GPU models with different numbers of processing units
or different scheduling of threads. In fact, the scheduling of GPU threads may even differ
between different runs on the same machine. However, the original algorithm is itself a
results-oriented approximation and our GPU implementation still generates visually pleasing
results which seem numerically stable. Accordingly, while it is important to be aware of these
differences, they pose no real issue.

3.6 GPU Implementation
After choosing the underlying model, the next step was to implement this on the GPU. The
article on viscoelastic fluid simulation was very practical and made it easy to understand how
to implement it as intended. Still, adapting this algorithm to the GPU carries a unique set of
challenges. The main difficulties concern data representation, communications between
processing units and parallel execution of particle threads. The result was an implementation
consisting of one GLSL shader program per pass and a set of functions in C++ for handling
and executing these shaders.

3.6.1 Workflow
At first, the viscoelastic fluid simulation was implemented on the CPU. This was a
straightforward and relatively simple process. Once this implementation was done, a final
version was produced by successively replacing each step in the algorithm with a GPU
implementation. In doing so, the correctness of each step and the potential differences in
behaviour between the implementations could be analysed one pass at a time. Such an
approach provided a significant advantage over trying to implement the entire algorithm
directly on the GPU; whenever a problem occurred, it was immediately evident in which pass
the problem originated. Integration issues were largely avoided as each component was
integrated into a working whole during its development, as opposed to having to integrate all
parts with each other simultaneously.

3.6.2 Data Representation
One of the key problems when implementing the algorithm on the GPU was determining how
to represent and store all necessary data. The primary concern was data transfers between
CPU and GPU. During the GPU passes, all data needs to be present in graphics memory. As
this is a large amount of data, it would be advantageous to keep it local to the GPU, avoiding
unnecessary data traffic. Moreover, one would like to store particle data so that the properties
of a particle are accessible from within a shader, given only the particle ID.

These concerns were addressed by saving all particle-specific data in floating point textures.
Due to hardware and software limitations, these textures need to be two-dimensional in order
to support large amounts of particles. Particle IDs are then mapped to two-dimensional texture
coordinates as a vector, where I is the particle ID and W is the width of the texture.

Said ID is a simple unsigned integer in the range [0, P – 1] where P is the number of particles
in the system. This way of assigning IDs facilitates efficient storage and access of particle
properties.

GPU Based Liquids and Surface Effects
Daniel Kvick 24

3.6.3 Vertex Shader
After the first hashing step, each of the remaining steps in the algorithm consists of a loop
over the set of all particles. All such steps are implemented as single graphics passes using the
same vertex shader. This shader is a simple one which, given the particle ID, looks up the
corresponding texture coordinates and sets this as output position for the vertex. These IDs
and texture coordinates are then passed to the fragment shader. As a result of all particle data
being stored as textures in graphics memory, the only particle-specific input to the vertex
shader is the particle ID. The list of particle IDs is also stored on the graphics card, meaning
no particle-specific data has to be sent from the CPU to the GPU. Therefore, only uniform
variables such as algorithm parameters, number of particles, screen size and transformation
matrices have to be sent over the graphics bus.

This uniform treatment of algorithm steps means that the only differences between passes,
from the perspective of the CPU, is which fragment shader is in use and which texture is set
as render target. Hence, a function was written which, given this information, binds all
textures and calls the appropriate shader. On the CPU-side of the implementation, each step is
then written as a single call to this function.

3.6.4 Neighbourhood Search
Graphics passes such as viscosity and double density relaxation require iterating over all
neighbouring particles. Given a particle’s hash position, it is guaranteed that all neighbouring
particles are found in the nine surrounding hash buckets. For this to work, texture coordinates
must be treated as being modulo the texture dimensions. In OpenGL, this is done simply by
setting texture wrap mode for each dimension of the texture to GL_REPEAT. A particle’s
hash bucket and its eight neighbouring buckets can then be found at texture coordinates
[x0+xi,y0+yi] where the particle itself has hash position [x0,y0] and xi and yi are integers in the
range [-1,1]. It is thus trivial to enumerate these buckets using a double loop over xi and yi.

3.6.5 Particle Creation
Particle creation is handled by the CPU, as this is where the logic resides which determines
when and where to spawn new particles. During the development, a shader was written for
spawning particles. The idea was to increase performance by minimizing CPU involvement
and data traffic over the graphics bus. Testing revealed that this method actually caused an
increase, rather than decrease, of computation time. The reason for this was that in spawning
particles on the GPU, particle data had to be generated on the CPU and sent as vertex inputs
to the graphics memory; the shaders then transferred the given data to the target textures. On
the other hand, the CPU-based method simply transfers data directly to texture memory. As
such, both methods require the same CPU computation and bus transfer, but the GPU
implementation required an additional rendering pass. With these conclusions reached, the
shader was removed, leaving the spawning of particles to the CPU.

3.6.6 Differences between Implementations
Adapting the particle simulation to the GPU leads to a number of differences in the
underlying algorithm. These differences are mainly caused by the parallel nature of the GPU
as well as lacking support for atomic read-write operations on vector types. Of special interest
are the viscosity and double density relaxation steps. During these steps, the original
implementation loops sequentially over all neighbours for each particle. On graphics
hardware, this will be executed in parallel for each particle. Additionally, the target variables
are read from one texture and the updated values are written to a separate buffer. This means
that the behaviour will differ somewhat from the original CPU implementation, where

GPU Based Liquids and Surface Effects
Daniel Kvick 25

positions are updated during the loop and these new values are possibly read back during a
later iteration.

The largest difference, however, is in the symmetry of applied impulses and displacements. In
the original paper, all impulses and displacements are immediately applied on neighbouring
particles, with the sum of these applied to the particle itself at the bottom of the outer loop.
Due to limitations in current hardware, this cannot be efficiently achieved on the graphics
card. The reason for this is the lack of an atomic read-write operation on vectors. In order to
compensate for this discrepancy, the GPU version removes the constant 0.5 from the viscosity
and double density equations. While, technically, this is not equivalent to the original formula,
it does in practice lead to a more realistic result.

3.7 Hashing
While the article on viscoelastic fluids [23] did mention the need for particle hashing, it
offered no insights on how to perform this hashing. Usually, this choice is limited to selecting
an appropriate hash function. However, if hashing is to be done on the GPU, the more
important question is how to perform this function and store its result in an efficient thread-
safe manner.

A simple hashing procedure which worked well in practice was to index each bucket by an n-
dimensional array corresponding to the position ranges of its contained particles. Given a
particle, each component Xi of its position is hashed according to floor(Xi) mod D where D
equals the maximum interaction distance between two particles. This vector is then used as
index in order to access the hash bucket.

Once a hash function was chosen, the next task was to find a method for performing the
hashing on the GPU. This is in fact an active research topic in which several interesting
articles have been written over the last few years. Several methods were investigated [1][24]
[25] and two of these were implemented for further evaluation. One option which was not
evaluated was to utilize CUDA for hashing via scattered writes. This decision was based on
earlier experiments in which using CUDA would severely damage performance (Section
3.2.4).

3.7.1 Spatial Binning
The first explored method of hashing particles on the GPU was inspired by Efficient Spatial
Binning on the GPU [24]. Using this method, the hash grid is split into a set of N layers, each
represented by a texture. The idea is that a bucket is represented by one texture coordinate
across multiple textures. A separate texture tracks the size of each hash bucket. Using a
bucket index as texture coordinates; the ID of the nth particle in the bucket can be identified
by reading from the texture representing the nth layer of the hash grid.

In order to generate this set of textures, particle IDs are rendered in N passes. During the nth
pass, the nth layer texture is bound as rendering target. During all but the first pass, the n-1th

texture is bound as an input texture. Using the particle hash as output position, the particle ID
is written into the correct bucket. The depth of a pixel is set to the written particle ID over the
number of particles. Thus, with depth testing set to pass the lowest value, the particle with the
lowest ID is written for each texel.

In the fragment shader, the particle ID is compared to the one written at the same position in
the previous layer. If the previously stored value is not smaller, the fragment is discarded.

GPU Based Liquids and Surface Effects
Daniel Kvick 26

This effectively sorts the particles in a bucket, ensuring that different particles are written to
each layer. Stencil buffering is used in order to avoid writing to a bucket once all its particles
are rendered. When a particle is stored in a layer, the iteration number is written to the stencil
buffer. Stencil testing is set to pass particles where the stencil value is equal to the number of
the previous iteration. Originally, all stencil values are set to zero, which causes all particles
to pass the stencil test during the first iteration. If the stencil buffer was not used, the layer
after the last particle of a bucket would be empty, causing the following layer to render the
first particle again. An alternative method to this stencil test is to clear the texels of each layer
to a value larger than any particle ID. This way, whenever no particle is written, the following
pass will discard all particles of that bucket due to the comparison of the particle IDs and this
higher value.

One drawback with this technique is the memory usage. With a maximum bucket size of N, a
total of N hash textures are required. There is also the possibility of overflow if N is chosen to
be too small. In fact, we found that hash buckets tended to contain very few particles on
average, with a few buckets containing a very large number of particles. This means that,
even with a conservative bucket size, a majority of the texture memory allocated will mostly
stay unused. Additionally, this method requires a total of N rendering passes, making the time
complexity of this method questionable.

3.7.2 Linked List Hashing
Another method for hashing the particles was devised in order to address these issues. By
using a linked list format, memory use was minimized and the hash buckets were rendered in
a single pass. The idea was inspired by “Real-Time Order Independent Transparency and
Indirect Illumination using Direct3D 11” [16] in which a linked list of fragments is used to
achieve order-independent transparency. Creating the linked list requires atomic read-write
operations on textures. For this purpose, the OpenGL extension
EXT_shader_image_load_store [17] was used.

In the linked list method, two textures are used. The head texture stores the head pointer of
each linked list while the node texture contains all nodes of the linked lists. In the original
paper, each node consists of two pieces of information: the fragment data and the next pointer.
A global counter is kept in order to keep track of the number of nodes written so far and is
used to select memory locations for each node. In our application, this scheme was simplified
significantly. We know beforehand how many particles are to be written and can use this
information to allocate a node texture of appropriate size. By using particle IDs as texture
indices, there is no need to separate data and next pointers. The head pointer is itself the data
to identify the first particle in each bucket. Similarly, the next pointers in the node texture
uniquely identify both a particle in its bucket and the memory location of the following node.
Finally, this use of IDs as pointers eliminates the need for a fragment counter as each particle
has already been assigned its memory location implicitly. As a result, our data structure
becomes very compact and efficient in both time and space. One single texture lookup is used
to both dereference the next pointer and read the next particle ID.

GPU Based Liquids and Surface Effects
Daniel Kvick 27

Figure 3: Linked List Hashing. A texel of the head buffer (left) points to the first of three texels in the node buffer
(top right) constituting a linked list. This linked list is visualized at the bottom right. Note that the address of an
element is itself the data stored in that node. The terminator END can be any value greater or equal to the num-
ber of particles.

While this technique is simple to implement and offers less complexity in both time and
memory, it comes with another type of cost: so far, the necessary OpenGL extension is only
usable on the latest generations of graphics cards. This means that linked list hashing is
unavailable to all users with graphics hardware which is slightly dated or from a lower price
class. As this is still a large portion of potential users, spatial binning should be kept as a fall-
back for machines on which linked list hashing cannot be used.

3.8 Surface Projection
The main goal of this particle system was to simulate fluid running across the surfaces of
geometry representing organic tissue. This requires some way of binding particles to these
surfaces; a problem for which two solutions were identified. One way of handling interaction
between fluids and meshes is by collision response. When particles penetrate a surface,
impulses are applied to cancel out the excessive forces. This collision response can also be
used to make particles cling onto a wall and run along its surface, rather than drop off into the
air. The primary drawback of such an approach is that it requires expensive collision detection
between simulated particles and the visual mesh; not the dynamic mesh used in other
dynamics. This is further complicated by the fact that particles are rendered on the GPU while
all dynamics and collision detection in LapSim is CPU-based.

Hence, an alternative solution which avoided such problems was selected. Rather than
simulating them as points moving in three-dimensional space, particles were handled in two
dimensions and projected across the geometry surfaces. All particle calculations are then
performed in texture-space and particle positions are mapped to texture coordinates.

3.8.1 Coordinate system
Projecting the particles onto a surface means mapping particle positions to texture
coordinates. The choice of this mapping has profound effects on the algorithm itself. The first
thing to note is that the method of binding positions to the surface of a mesh may change the
very nature of the simulated space.

In particular, one must carefully consider the choice of how to handle particles moving over
the edge of the texture. One choice is that these particles are no longer drawn; this means the
simulation is carried out in an open space, of which only a portion is visualized. Alternatively,
the positions can wrap around; the surface is then simply connected. Doing this lets particles
flow across certain texture seams, allowing natural simulations across closed meshes. It is
essential that the texture wrap mode and shader implementation agree in terms of this choice.

GPU Based Liquids and Surface Effects
Daniel Kvick 28

Simulating in free space but treating texture coordinates as modulo the texture size means that
particles which are too far from each other to interact may still be drawn next to each other.

Our choice was to use an open particle space. We also treat positions directly as texture
indices, which simplifies the hashing. In order to avoid pointer issues and minimize
computations, particles outside of the texture area are discarded during the hashing, viscosity
and double density steps.

3.8.2 Texturing
When particles are simulated in texture space, it is important to consider how texture
coordinates are mapped across mesh surfaces. Any seams which do not connect opposing
edges of the texture may lead to particles seemingly jumping or disappearing altogether as
they cross the seam. Another source of artefacts is stretching and compression of texture
coordinates. The speed at which particles move is dependent on the scale of texture
coordinates, which can vary across different surfaces. This same scale also determines the size
with which particles are drawn. In fact, not only can this scale vary across surfaces, the scale
can also differ between the two dimensions of the same surface. Many of these artefacts are
hidden by the blurring and smoothing effects of the visualisation. Still, extreme stretching and
compression of textures can lead to elongated particles or significant differences in apparent
simulation speed between different surface areas. For the purpose of this report, such concerns
are considered the responsibility of the model and texture artists.

3.8.3 Gravity
With particles simulated in two dimensions and projected onto the surface, gravity equations
can no longer be carried out in the simulation space. In order to give a realistic behaviour, the
direction and magnitude of gravity for a particle needs to depend on the orientation of the
surface onto which it will be projected. This is carried out by the following system of
equations.

gu=u⋅g
gv=v⋅g

g '= gu ,gv

In this set of equations, g describes gravity in world space, u and v describe the projection into
world space of a unit vector along the respective axes of the particle’s texture space and g’ is
the resulting gravity vector applied to the particle velocity.

Before carrying out these equations, one first needs to generate the appropriate u and v
vectors. This is done by two simple GPU passes over the mesh. The first pass stores, at each
texture coordinate, the corresponding vertex position. In the next pass, u and v are calculated
as follows.

u=Δu=0.5 V 1,0−V−1,0
v=Δv=0.5 V 0,1−V 0 ,−1

The position Vu,v is attained by an addition of (u,v) and the vertex position stored at the current
texture coordinate.

3.9 Particle Visualisation
Once the particle system is simulated correctly and a mapping between positions and texture
coordinates has been chosen, the one remaining issue is the choice of how to visualize these

GPU Based Liquids and Surface Effects
Daniel Kvick 29

particles when drawing the mesh. While particles are simulated as discrete entities, sets of
nearby particles should be rendered as contiguous units. The idea is to give smooth visuals
and make the blood seem like a fluid substance, rather than individual particles. This leads to
an issue of how to identify the fluid surface.

3.9.1 Marching Squares
One solution which was briefly considered was to use the marching squares algorithm. In
marching squares, the surface of a mesh is approximated by dynamically creating a set of
contours which approximately enclose the original mesh. A grid is used and the corners of
each cell are sampled to find whether or not they contain any geometry. Each possible
configuration of corners maps to one contour image. Filling each cell with the corresponding
image generates a visualisation of the fluid surface. For arbitrary precision, the algorithm can
be run recursively down to any predetermined depth for each corner where geometry was
found. The downside with marching squares is that checking if a cell contains particles can be
very costly. In our application, the procedure can be sped up significantly by aligning the
dimensions of the grid with that of our hash textures.

3.9.2 Position Smoothing
In the end, we chose a simple solution of smoothing particle positions. When drawing blood,
particle positions are first rendered into a floating point texture: after clearing all texels to 0,
each texel corresponding to a particle position is set to 1.0. In the next pass, a square area
around each texel is sampled. Dividing the sum of these samples by the size of the sampled
area produces an average over said area. The bigger the sample area, the smoother particles
will look. However, the complexity of this procedure is quadratic with respect to the side of
the sampled area.

b=
∑ ti

d 2

Here, d is the side of the quadratic area sampled and ti stands for the ith neighbouring texel.
The resulting blood value b is in the range [0, 1] and describes the density of blood in the
sampled area. When drawing the blood, b is used to modulate the blood colour while 1-b is
used for the surface texture. Thus, particles near each other blend together to form a blood-
coloured surface. Furthermore, the edges of this surface fade towards the colour of the surface
texture. This gives rise to a smooth transition at the edge of puddles and streaks of blood.

This method alone suffers from serious visual artefacts. As particles move within a fluid,
spots of lower density cause flickering across the surface. This effect is alleviated by slightly
modifying the output of the first visualisation step. If a value v corresponds to whether any
particle position maps to the given texel, we instead write max(v,kb) where k is a fading con-
stant and b is the current blood value in that texel. In doing this, values are also smoothed
over time, hiding minor temporal variations in surface density. Using this approach, it is suffi-
cient to sample only the nine immediate neighbours of each texel.

3.9.3 Hash Position vs. Real Position
In our implementation, the hash map and target texture have the same resolution. This means
that, when rendering, particle positions and their hash positions give equal precision. As an
effect, the first step is done by rendering, for each pixel, a Boolean value representing whether
or not the corresponding hash bucket is non-empty. It is also possible to have a higher
resolution on the final drawing texture than what is used for the hash texture. In such a case,

GPU Based Liquids and Surface Effects
Daniel Kvick 30

one must instead loop through the hash buckets and, for each particle, render it at its actual
position. Doing this will result in higher resolution, but would make visualisation more costly.

GPU Based Liquids and Surface Effects
Daniel Kvick 31

4 Results
4.1 Realism
As discussed in section 1.1, the primary motivation of this project was to increase the realism
of certain surface effects. In this context, realism implies faithful representation of the
processes involved as well as their visual results. For any particular frame in isolation, it is
primarily the method of visualisation which determines the perceived realism of a model.
When observing an effect over time, however, the behaviour of its underlying model becomes
important. For example, the modelling of temperatures has no direct effect on the visuals of
any one frame. Still, it was found that modelling temperature greatly improved the perceived
realism of the cauterization simulation. With this in mind, the realism of the surface effects
was evaluated in how well both their behaviour and visuals approximated reality.

4.1.1 Cauterization
Unlike the current solution in LapSim, our new model supports visualisation of the multiple
stages of tissue damage. In the current implementation, colour fades towards white, but never
blackens. In our solution, serious tissue damage does lead to blackening of the burned tissue.
More importantly, the floating point representation of tissue decay makes it easy to modify
the visual behaviour as required. In a manner of seconds one can reconfigure the order and
duration of stages, or even insert new stages.

Another advantage of our solution is that the shape of burn wounds can closely approximate
the shape of the instruments used to cauterize. This can be clearly seen in Figure 4. Currently
in LapSim, collisions are detected between the low-resolution dynamic mesh and a few points
on the instruments. Thereafter, tissue decay is spread to all surrounding vertices. As a
consequence, the resulting marks bear no resemblance to the instruments used to perform the
cauterization. On the other hand, our solution uses high-resolution textures for storing burn
values and distance field lookups to replace the collision detection. This leads to an effective
approximation of collision detection between every point on the surface against every point
on the instruments.

One of the most important improvements with the new model is that it is based on
temperature, rather than direct manipulation of tissue decay. While the current model is
simplistic and should be improved before integration into LapSim, it fulfils its purpose as
proof of concept.

GPU Based Liquids and Surface Effects
Daniel Kvick 32

Figure 4: Tissue which has been cauterized using the presented method. The silhouette of the tool used is visible
in the resulting burn mark.

4.1.2 Fluid Simulation
The solution presented in this report is a significant improvement over the current fluid
simulation used in LapSim. Unlike the current ad-hoc solution, it is based on a well-motivated
physical model. It is also pixel-based, allowing much higher resolution than a vertex-based
approach. The most evident signs that our fluid simulation is well-behaved lies in its high-
level behaviour. As particles travel across the surface of a mesh, they interact to form streaks
and puddles of blood. As these collide, one can witness waves travelling across the
boundaries of the fluid. This type of behaviour corresponds well with what we would expect
from fluids in reality.

Figure 5: Blood forming streaks and puddles as it runs across tissue.

The visualisation itself also satisfies our demands for realism. Individual particles are not
directly visible. Instead, the abstract shape of the fluid is rendered, visualising the
aforementioned streaks and pools of blood. Figure 6 shows how distinct particle positions are
blurred together to form a solid surface. Furthermore, the blurring gives a sense of fluid
density which corresponds well to the number of particles in each area.

The most obvious artefact of this visualisation is an apparent glow around the boundaries of
puddles and streaks of blood. This effect comes from the smoothing of particle positions.
Other versions which do not produce this type of glow were explored, but their sharp edges
made the blood look unrealistic and cartoon-like. While the glow is obvious in still images, it
is less noticeable when the simulation is running.

GPU Based Liquids and Surface Effects
Daniel Kvick 33

One concern during development was that sinks in the normal map would lead to shaky
behaviour. Conceptually, a particle which enters a sink could oscillate between the different
sides of its gravitational pit. In fact, this behaviour can be witnessed in single particles. This is
not a problem, however, as the inter-particle forces will either hide or cancel this effect even
with small numbers of particles around a sink.

4.2 Performance
When evaluating the results of a real-time graphics implementation, performance is a key
point of interest. Performance is usually evaluated in terms of frame rate, measured in frames
per second (FPS). These measurements can vary widely depending on the simulated situation,
which leads to the problem of how to give a fair performance estimate of a nontrivial system.
With many variables affecting the outcome, it is impossible to measure the full behaviour of
any reasonably complex system. In order to mitigate this problem, experiments were
performed to determine the most relevant variables. Guided by these efforts, independent
performance measurements were performed targeting the most interesting aspects of the
system behaviour.

Our implementation of cauterization was found to have a frame rate of around 400 FPS.
While this performance is acceptable, it is perhaps somewhat low considering the simplicity
of the simulation. The reason for this is that the current implementation uses immediate mode
for rendering. Using vertex buffer objects instead could increase frame rate significantly. The

GPU Based Liquids and Surface Effects
Daniel Kvick 34

Figure 6: Rendering of particle positions in particle space (left) and final result of rendering particles with blur -
ring (right).

reason this was not done within the scope of the project was that the achieved frame rate was,
nonetheless, beyond sufficient. As the cauterization shaders contain almost no branching, this
frame rate is also solid and displays no mentionable dependency upon any parameters. In
view of this, the remainder of this section focuses on the fluid simulation, for which
performance is a much more interesting issue.

4.2.1 Performance Measurements
All performance data was gathered by resetting the simulation and recording the frame rate
for thirty consecutive seconds, starting shortly after the moment of initialisation. At the time
of initialization, the desired amount of particles was spawned in a rectangular grid centred on
the origin of our mesh. Doing this gives the particles enough time to settle, while still
recording frame rates from the initial phase during which the most activity occurs. The reason
that benchmarking does not start immediately after the moment of initialization is that, for
large amounts of particles, many particles are initially located in the outermost hash buckets.
This may lead to very long linked lists, causing significantly slower evaluation of the first few
frames. Including these frames in the measurements would introduce an unfair bias to the
performance results.

The hardware used during all simulation was a PC with 4 GB RAM, an NVIDIA GTX 460
graphics card and an Intel i5 CPU clocked at 2.8 GHz. All CPU implementations were written
as a single thread and thus utilize a single core.

4.2.2 GPU vs. CPU
The main idea of this project was to achieve efficient particle simulation by exploiting the
parallelism of modern graphics hardware. As such, it is interesting to compare results between
our final implementation and the CPU-based version. In a series of tests, we measured frame
rates for both versions while successively increasing the number of particles. In an attempt to
give a fair comparison, the spring steps were removed from the CPU version. Furthermore,
visualisation of particles was turned off, as this was never implemented for the CPU and is not
part of the simulation model itself. The result of this comparison is visualized in Figure 7. It is
immediately obvious that the GPU version scales significantly better than the CPU version.
Interactive frame rates can only be achieved for up to 750 particles on the CPU and at 2500
particles, the frame rate has dropped to 7 FPS. At this point, the GPU simulation still reaches
a frame rate around 1800 FPS, more than 250 times greater. An interesting side note is that,
after this point, CPU frame rate decreases very slowly and does not dip below 1 FPS until
40000 particles are used.

GPU Based Liquids and Surface Effects
Daniel Kvick 35

Figure 7: Comparison of frame rates between the two particle system implementations.

This remarkable difference in performance may seem surprising. After all, the source codes
for the two variants exhibit the same complexity and differ only in a few details. However,
there are clear reasons why such a difference should, in fact, be expected. The task of
simulating this particle system is inherently parallel. Large numbers of particles are simulated
by performing identical calculations on each. The biggest difference in control flow between
two particles is the number of iterations when looping over all neighbours. Consequently, we
have almost ideal conditions for exploiting the parallel architecture of modern graphics
hardware. Consider that the CPU-based version performs these computations one particle at a
time, using a single core with clock frequency of 2.8GHz. On the other hand, the GPU used
has 336 CUDA cores clocked at 1.6GHz, all working in parallel. Putting things in this
perspective, the great difference in performance is indeed understandable.

4.2.3 Buffer Size
One of the most important variables in terms of memory complexity is the size of the used
buffers. In our current implementation, the same resolution must be used for all particle
property buffers as well as both hash buffers. Consequently, the choice of buffer size affects
everything from the resolution of hashing to the maximum number of particles supported in
the system. The necessary minimum resolution depends on the scale of geometry as well as
the desired level of detail.

Within our test application, it was found that buffers should have a resolution of at least
256×256 texels to achieve acceptable visual quality. The best results were attained using
textures of 512×512 texels. For benchmarking purposes, a resolution of 1024×1024 texels was
also used when measuring performance.
As can be seen in Figure 8, performance scaling is very similar between different buffer sizes.
In fact, the choice of buffer size does not seem to limit performance in any realistic scenario.
The base costs of certain operations do depend on buffer size, which may lead to a noticeable

GPU Based Liquids and Surface Effects
Daniel Kvick 36

difference in frame rates before any particles are added to the system. However, this gap
quickly closes as particles are added to the system, making these differences irrelevant for
practical applications.

In theory, performance of the visualisation step does depend mainly on the dimensions of the
hash textures. In practice, however, this is negligible in context of the much more complex
particle simulation. While there is some smoothing involved, the visualisation is still simple
enough that its impact on the frame rate is negligible.

This insensitivity to buffer size is a positive result. It means buffer size can be chosen
according to memory limitations and mesh dimensions, without having to consider the effect
on performance. An interesting thing to note is that, with low resolutions, it is not even
possible to add enough particles to reach below interactive frame rates. With the greatest
possible amount of particles in the system, the three resolutions tested led to frame rates of
119 FPS, 38 FPS and 12 FPS respectively.

4.2.4 Particle Spawning
One serious bottleneck in the current implementation is the cost of spawning new particles.
Every time new particles are added, the buffers for position and velocity have to be read from
the graphics card, modified and written back to the graphics card. This means a substantial
amount of data is moving across the graphics pipeline every frame that new particles are
spawned. During our benchmarks, it was found that the frame rate could drop by several
hundred frames per second due to this data transfer. Unfortunately, there is no way to avoid
transferring particle data to the graphics card during this process. However, it is possible to
minimize the amount of data transferred. When spawning new particles, their positions and
velocities do not depend in any way on particles already in the system. Nor does the spawning
of new particles immediately influence the properties of existing particles. Consequently,
there is no need to update the entire particle property textures when adding only a few
particles. As a future improvement, one could send only the texture rows corresponding to the
new particles. This would also mean one no longer has to transfer current particle properties

GPU Based Liquids and Surface Effects
Daniel Kvick 37

Figure 8: Frame rates for varying buffer size

to the CPU in order to spawn new particles. Implementing these improvements would save a
lot of unnecessary traffic over the graphics bus, preventing sharp drops in frame rate.

4.2.5 Density
A key realization regarding performance was that density is probably the most important
factor affecting the frame rate of the simulation. The reason is that, even with low density, the
traversal of linked lists in the node buffer constitutes a majority of the computation time. As
density increases, so do the lengths of these lists. In special cases, where large numbers of
particles occupy a small area, frame rates can drop below interactive frame rates even with
relatively few particles present.

Figure 9: Frame rate dependence on density in a system of 256×256 particles using a buffer size of 512×512.

These occurrences are rare in realistic scenarios and usually last only a short time, while the
fluid approaches rest density. However, a high enough rest density would mean that simula-
tions would tend towards these situations. To confirm the effect of long lists in the hash buffer
on performance, we ran the same simulation many times with varying rest density. During
these tests, we used a texture size of 512×512 and spawned 2562 particles. The results, visual-
ised in Figure 9, show a clear downward trend as rest density is increased. This confirms the
proposition that particle density, and thus the average length of hash lists, has an immediate
effect on performance of the simulation. It is important to realise that this variation of rest
density was used merely as a way of indirectly influencing the length of linked lists during
hashing. Not only does high rest density slow down the simulation, it can also lead to numer-
ical instabilities. During our experiments with density, we found the simulation to be unstable
for rest densities above 30. If a higher density is desired for simulation purposes, one should
also consider changing resolution of hash textures.

GPU Based Liquids and Surface Effects
Daniel Kvick 38

5 Discussion
Designing and implementing the described systems implied a large number of choices.
Primarily, we had to identify and select an approach to each problem. Within the context of
each algorithm, we also had many options for how to deal with its individual components. For
every choice we made, there is also an opportunity to do things differently. It may be that
some other path would have led to significantly better results. Such possibilities are difficult
to judge, and can never be entirely excluded. What we can say, however, is that we achieved
our goals and that we are satisfied with the results.

There are obviously things which, in hindsight, we would have done differently. Still, such
speculations should always be taken with a grain of salt. There are indeed mistakes which we
genuinely could have avoided. It is difficult, however, to tell these from the suboptimal
decisions caused by lack of experience. Experience we could not have attained before making
these decisions.

On the other hand, results are not the only things of interest. It is at least as fascinating to have
a look at the process itself. Especially when it comes to predictions of how a task will unfold
as you work with it. You can learn a lot from the discrepancies between your expectations and
the actual turnouts.

5.1 Cauterization
From the very beginning of the project, it was formulated as an implementation of fluid
dynamics across a surface, with the possible addition of cauterization marks. This attitude
reflected not the relative importance of the tasks, but the expectations on their relative
difficulties.

Now that the project is completed, we can safely say that such beliefs were indeed well-
founded. The entire cauterization part of the project was performed as a short digression in-
between the research and implementation phases of the fluid simulation. This does not mean
that it was rushed. The original idea was to work intermittently on the two; it just so happened
that the first period of work on cauterization was enough to fulfil our goals. We then decided
that what we had achieved was sufficient and that further effort was not warranted.

As has been mentioned above, it is difficult to properly learn new techniques and frameworks
while using them to solve a complex problem. For this reason, the simpler task of
cauterization served as an excellent learning platform in preparation for the fluid simulation.
On an abstract level, both simulations are very similar, the fluid simulation is simply more
complex. This allowed us to try our hand at some of the necessary techniques, before having
to implement them in the more complex simulation.

5.1.1 Shader Implementation
In particular, the cauterization simulation provided simple tasks to help familiarize ourselves
with the necessary methodology for creating multi-pass algorithms using the latest versions of
OpenGL and GLSL. The reason that this was non-trivial is that the latest versions of these
systems introduce a new way of thinking about shader programming. Previously, GLSL has
supplied standardized variables for shader I/O, along with the ability to define supplementary
inputs when necessary. The new way of thinking is that the interfaces between OpenGL and
shaders, as well as between different shaders during a rendering pass, are entirely determined

GPU Based Liquids and Surface Effects
Daniel Kvick 39

by the programmer. As a consequence of this new outlook, practically all predefined variables
of GLSL have been deprecated. This, naturally, leads to a period of adaptation and
experimentation while getting used to this new way of thinking about shaders.

The relative simplicity of our cauterizations provided an excellent way to experiment with this
new methodology, while still working on an actual problem.

5.1.2 Texture Facilities
Something which we thought would prove difficult was the use of general data textures. In
particular, we expected issues with the recent support for three particular properties:
dimensions which are non-power-of-two, floating-point data and three-dimensional texture
sizes. It was not so long ago that working with such textures was only possibly through non-
standard extensions. Using such extensions was often difficult and error-prone. As such, it
was a surprising relief that, with current technology, these facilities are as easy to use as any
other type of texture. Having investigated this meant less worry and more straightforward
work when implementing particle systems on the GPU.

5.1.3 Temperature Modelling
While the visual quality of the end result is pleasing, the chosen heat model is too simplistic.
The current model does not allow for much spread without numerical instabilities, leading to
little actual utility of the modelled temperatures. During development, a lot of time was spent
optimizing parameters for visual quality. This time would have been better spent developing a
better model for heat transfer. The reason for this lapse in judgement was the late realization
that temperature would be an important component of the final solution. When the subject of
heat transfer was first encountered, it was deemed out of scope and treated as a possible future
extension. If instead, it had been considered a vital part of the application, it would have been
possible to reach a more mature solution within the scope of this project.

5.2 Fluid Simulation
5.2.1 Theoretical Models
One of the principal challenges with this project was the complexity and wide variety of
mathematical models used to describe fluid motion. Guided by an abundance of research
results and articles, we were quickly able to gauge alternatives and determine a feasible
solution. However, it seems now that we would have benefited from a more cautious
approach to this process. The chosen method was definitely a good alternative. Still, there is a
feeling that perhaps it would have been better to spend more time studying the different
alternatives before settling on a particular candidate. In essence, a better understanding of the
mathematics involved could have simplified the design and helped better motivate some of
the important decisions. On the other hand, attaining such knowledge with no practical
experience of fluid simulations would have taken considerable effort. This, of course, means
it would have taken more time; time stolen from the implementation phase.

Nonetheless, we could have afforded taking a closer look at other SPH variants. Implementing
viscoelastic fluid as described by Clavet et al. [23] took little more than a day of work.
Perhaps, it would have been well worth it to attempt an implementation of some other
carefully selected option. Doing so could have helped highlight the differences between
approaches in terms of computational complexity. At the very least, failing to implement a
second algorithm could have confirmed our belief that, as fluid simulations go, viscoelastic
fluid is relatively easy to implement.

GPU Based Liquids and Surface Effects
Daniel Kvick 40

5.2.2 Modification of Algorithms
A large part of our work consisted of adapting algorithms to fit the setting of our project. In
doing so, we learned that the details of such techniques are not written in stone. Within a
given setting, it is even quite possible to improve upon established techniques. A good
example of this is how the linked list scheme could be simplified by knowing the number of
particles and assigning IDs ahead of time.

Possibly the best choice made during the entire project was to first implement viscoelastic
fluids on the CPU. Not only did this help us in developing the GPU version, it also made it
very easy to test variations on the algorithm. We knew from the start that it would not be
possible to implement this algorithm, without modifications, on the GPU. Having a CPU
version made it very easy to test what results different simplifications would give. A
surprising result was that very few details of the original algorithm are actually necessary to
achieve seemingly realistic fluid motion. The steps we eventually decided to leave out were
the ones involving the springs which provide the elasticity and plasticity of the fluid. This
may sound strange, in context of using the viscoelastic fluid model. However, the primary
reason for choosing this model was its simplicity, not the elasticity from which it derives part
of its name.

5.2.3 Graphics Programming
Implementing solutions for graphics hardware is a unique experience and this project has
taught us that modern GPUs are powerful indeed. Their parallel nature means they can
operate on huge amounts of data. Additionally, many algorithms scale beautifully on the
GPU. This means there is very good motivation for wanting to use graphics hardware for
general-purpose computations. However, getting even a simple algorithm to work can be an
immense task. It is generally not possible to set breakpoints in shader code or step through it
in any way. The only way of testing a shader is by executing the entire graphics pipeline and
monitoring the results. This often makes it difficult to find where a bug lies and how to solve
it. From our perspective, this hints at a need for future development of the tools involved.
Using CUDA, it is already possible to set breakpoints in code which is run on the graphics
card. Similar faculties would be invaluable when developing shaders. Currently, the difficulty
of writing code for graphics hardware is a serious bottleneck in the development of scientific
simulations and electronic entertainment. With better tools to support shader development,
such projects could progress at a remarkable speed.

5.2.4 Visualisation and Surface Projection
It was surprisingly easy to achieve sufficient visual quality when rendering the fluid. Our
original idea was to create the fluid surface by rendering particle positions and then blurring
the resulting image in a series of three passes. By using such a simple method, we hoped to
get a hint at how difficult the task of visualization was. Surprisingly, a simplified version of
this original scheme turned out to provide sufficient visual quality. Once a working procedure
had been developed, a long succession of small improvements were found. During this
process, it became clear exploring alternative methods of visualisation could constitute a
Master’s thesis of its own.

5.3 Utility Libraries
In creating any kind of complex system, there will always be tasks that have to be repeated
many times. In something like a graphics application, most operations are variants on the
same algorithm on the same kind of data. This means the CPU side of the code contains many
different sections setting up the same type of data for the same type of operations. When

GPU Based Liquids and Surface Effects
Daniel Kvick 41

doing the same things many times over, writing repetitive code may take up a lot of time.
Worse yet, the resulting mess easily causes as well as hides bugs.

In these cases, it is invaluable to have implemented utility classes and functions for the most
recurring data types and the operations on them. You only need to implement such utilities
once. From then on, you can rely on it working well wherever it is used. One of the most
important lessons learned during this project was that, if you find yourself being bothered or
worried about repeatedly writing the same code, or hunting the same bug, it is worth it to take
a step back and write utilities for code reuse. Another positive effect is that using such utilities
is generally much cleaner, resulting in code which is easier to read.

5.3.1 Level of Abstraction
Something which occurred multiple times with several of these utility classes was an
uncertainty regarding the proper level of abstraction and generality. When first designing the
Frame Buffer Object (FBO) and shader program classes, it was not clear how general these
needed to be. There are many variables and modes of usage which can be taken into account.
It is difficult to predict what level of customization is actually necessary. At the same time,
every unused feature takes time to write and complicates the design. Accordingly, the first
implementations of all utility classes were simplistic and only provided support for the
patterns actually occurring in the code.

From the beginning, we were aware that these patterns might be broken in the future,
requiring a rewrite. In the end, the necessary generality was continuously underestimated
when designing, and redesigning, these classes. This does not mean it would have been better
to make a more general design from the beginning. These classes were designed to be as
simple as possible and, as a result, took very little time to implement. Furthermore, it is only
by practical use of a system you learn what you need from it. While using the classes, one
quickly learns which restrictions and interfaces impose impractical constraints. Simply put,
you easily notice what code is bothersome to work with. When the time came that a
generalization was necessary, this experience mostly made the redesign task trivial.

5.3.2 Design Process
As concluded above, a suitable level of abstraction for utility libraries needs to be
continuously redefined during the course of a project. Accordingly, a suitable strategy is to
create simple utilities which offer little more than is needed at the time when they are written.
When some utility class no longer satisfies the user’s needs, it should not be given a quick
patch. Instead, the overall design should be reconsidered, creating a new tool which is often
both more powerful and easier to use. In making such choices, a utility library tends to grow
naturally into an increasingly elegant solution to the current problem.

It is important to exercise some caution during this development process. The described meth-
odology is only suitable for fairly trivial classes for interfacing with the underlying frame-
works. Larger components of the system should be carefully crafted at the earliest possible
design phase. If some utility class grows unreasonably large, this may be a sign that the
concept it embodies is something more than such an interface. Another possibility is that what
should have been multiple related classes has been put into a single unit. In this case, the best
choice is probably to refactor the affected utilities.

GPU Based Liquids and Surface Effects
Daniel Kvick 42

6 Future Work
While the systems described in this paper are completely implemented and fully functioning,
they are not necessarily the final result. There are many potential improvements, extensions
and ideas which can still be explored. These modifications, while relevant, were simply
deemed to lie outside of the scope of this project. Some improvements will be implemented as
our solutions are integrated into LapSim. Other augmentations have been deemed unnecessary
for our particular application, but are still presented here for the sake of completeness. As
these ideas are not yet fully developed, their purpose is explained below along with only a
vague description of how to implement them.

6.1 Cauterization
6.1.1 Heat equation
In the described solution, heat is increased while cauterizing and dissipates with time. This
generated heat is then spread to neighbouring pixels. Balancing the cooling rate and amount
of spread is non-trivial. If the two are not carefully configured, heat will either dissipate
instantly or grow uncontrollably due to a positive feedback loop. In fact, we did not manage
to attain satisfactory level of spread without temperatures diverging. Such issues can be
solved by using the heat transfer equations as described by Fourier (Section 2.1.1), rather than
an ad-hoc method. With this in place, amount of spread and heat given from instruments can
be easily configured without risk of numerical instabilities.

6.1.2 Smoothing Issues
While the smoothing issues described above were considered acceptable, they can be solved.
One can generate a texture containing neighbouring texture coordinates. During the heat
transfer, this texture can then be used to find the neighbouring heat values for smoothing. The
additional computation required by such a method amounts to one additional texture lookup
per neighbour for each pixel. This does not count the time required to generate such a lookup
texture, as this may be pre-compiled offline. Memory complexity is similarly increased by
one integer per neighbour for each pixel. It may be possible to reduce this by using a more
advanced scheme, only storing references to those neighbours which lie across texture seams.
On the other hand, such an optimization would again require additional computations.

6.2 Fluid Simulation
6.2.1 Particle Lifetime
A simple extension which would give much to the simulation is a lifetime counter for each
particle. This could be implemented simply using an integer texture which is initiated to a
lifetime value when new particles are spawned and, if non-zero, decremented each frame.
Particle steps could then simply terminate if the remaining lifetime was found to be zero.

6.2.2 Adaptive Texture Mapping
It is not always possible to ensure that texturing is made sufficiently uniform for the described
method to give good results. By rendering texture coordinates to a texture, the scale of each
texture dimension can be calculated per pixel. With these factors available, mapping of
positions to texture coordinates can be made adaptive to ensure stretching and compression
artefacts are minimized. To minimize computation time, a multi-pass algorithm which
samples these written coordinates may instead be used to calculate new, uniform coordinates.
This way, position mapping only has to be reconsidered when the mesh is deformed.
GPU Based Liquids and Surface Effects
Daniel Kvick 43

At other times, it may be impossible to utilize some portions of the texture or to avoid
unfavourable texture seams. Such issues can be treated as discussed in section 6.1.2.

6.2.3 Three-Dimensional Particles
Technically, the implemented particle system supports more than two dimensions. The only
real issue is how to solve hashing in three dimensions; the memory complexity of a three-
dimensional texture is rather restrictive. In some situations, one axis may be identified along
which a coarser level of hashing is necessary. One example is the direction of gravity, in
which blood tends to move quickly unless it is stuck to a surface. In such a situation, the hash
texture may be set up to use only a few slices in this third dimension, giving a coarser hashing
along the least important dimension. When hashing without linked lists, this may lead to
performance issues as one must iterate over these hash layers, thus increasing memory cost by
a factor L, the number of slices used in the third dimension. Another choice is to hash
particles in two dimensions, while simulating them in three. Such an approach may lead to
large amounts of unnecessary computations when particles at different depth are placed in the
same hash bucket.

The approach which seems to show the most promise is simulating surface-bound particles as
described in this report. Liquid not in contact with a surface, however, could be simulated
separately using three-dimensional calculations in world space. Due to the presence of
gravity, such spurts or drops would only be in free fall for a short amount of time before
colliding with a surface. The small amounts of liquid simulated in 3D can then be hashed
using only a few vertical texture slices.

6.2.4 Collision detection
Assuming a satisfactory three-dimensional hashing was devised, it would be possible to
simulate particles directly in space, rather than projected onto a surface. This way, effects
which are currently not supported, such as dripping and pooling, would immediately follow.
However, this would require the particle system to interact with the geometry of the scene.

A popular approach to this is to generate surface particles. When particles collide with a
surface, new immovable particles are spawned to represent this surface [1]. The particle
system will then automatically compensate and particles will flow around the surface, rather
than through it. Unfortunately, this idea relies on the view of particle interactions as an
equation system to be solved by a numerical solver. With the simplified model of visco-elastic
fluids, this is not the case. A simpler solution would be to apply an impulse to any particle
colliding with a surface. This impulse would be directed along the normal of the surface and
have a sufficient magnitude to move the particle out of the mesh.

6.2.5 Geometry Discontinuities
Issues may arise when the simulated 2D space does not correspond well to the surface of the
target mesh. More specifically, when there are discontinuities in either the mesh itself or the
mapping of texture coordinates onto the mesh. In LapSim, the most common case is that the
discontinuity exists purely in the mesh. For instance, this kind of discontinuity occurs when a
user makes an incision in a dynamic surface. This means the mesh now contains a gap while
the texture corresponds to the surface as it would be if this gap were to be sealed. If these
discontinuities are not considered, particles travelling across the gap will seemingly disappear
from one end and instantly reappear at the other. Similarly, if the discontinuity exists in the
texture mapping, particles may disappear in one frame only to appear at a seemingly
disconnected point some frames later.

GPU Based Liquids and Surface Effects
Daniel Kvick 44

There are multiple ways of handling this kind of discontinuity issues. The simplest way is to
mark discontinuities in the alpha layer of the particle position textures. With this in place, the
simulation itself can prevent particles from crossing a discontinuity. The drawback of this
solution is that it instead would lead to particles at the edge of an incision lining up, rather
than flowing into the wound. To solve this, one may allow particles to transfer from one
surface to another. This would mean keeping track of which surfaces are in contact and how
their respective texture coordinates map onto each other.

A more general but expensive solution is to dynamically remap texture coordinates used for
simulation in order to remove discontinuities altogether. The area, in world space coordinates,
of the gap should then be used to estimate the necessary texture area to represent the gap.
There would be no need to change particle positions which map to a surface texel with
horizontal coordinate less than the first gap texel on its line. The remaining positions would
be incremented by the width of the gap at their corresponding line of the new surface texture.

6.2.6 Obstacle Map
During an actual surgery, the blood does not flow over the surface like a wave which covers
everything. Some details extrude from the surface, causing the blood to flow around, rather
than covering them. One way of getting such a visual effect, without having to implement
collision detection, would be to use an obstacle map. This obstacle map would be a static
texture containing, for each texel, a single value indicating whether or not that point is
obstructed. For compactness, this could be stored in the alpha component of the normal map.
In the simplest case, the obstacle component would be a binary value and blood would only
be drawn at unobstructed positions. By setting up a suitable obstruction map, texture artists
can make certain details seem like they stick up above the surface of the blood. Alternatively,
the obstruction value could be interpreted as a minimum blood value required for blood to be
drawn at that position. This would make thick concentrations of blood flow over low
obstacles, while thinner droplets would seem to move around them.

6.2.7 Improved Visualisation
The simple visualisation technique implemented for this report has one noticeable issue: as
the blood is simulated and visualized across the surface of a texture, it looks flat. This can be
alleviated by using the blood value as a depth map. This way, the density of blood in an area
is used to calculate displacement along the surface normal. There are many methods of
achieving such results. One technique is to tessellate the interesting areas and use a geometry
shader to displace the resulting vertices. Another idea would be to implement some form of
parallax mapping [26].

The current use of a fading constant was originally motivated by the wish to have blood linger
slightly after leaving an area. The intent was to allow the use of fewer particles to produce the
visual effect of a constant stream which lingers somewhat after the particles are gone. While it
did work very well to solve other issues, it did not achieve this original purpose. As such, a
future expansion would be to devise a method which truly accomplishes this. The easiest
method would probably be to make the blood texture double-buffered and combine both
buffers during visualisation.

Furthermore, the simple method of blurring causes some visual artefacts, discussed in Section
4.1.2. This type of issues may be removed by using a better function for smoothing of blood
values.

GPU Based Liquids and Surface Effects
Daniel Kvick 45

6.2.8 Particle-specific Properties
Another goal, which was implemented on the CPU but not transferred to the GPU, was the
ability to mix fluids with different physical properties. This is done by having constants such
as viscosity be particle-specific. This allows for interaction of different kinds of fluid and
naturally gives rise to effects such as segmentation of water and oil. On the CPU, interactions
between two particles were handled by using the averages of their respective constants. In the
context of virtual surgery, particle-specific properties are interesting in order to simulate the
interaction between blood and other bodily fluids, as well as water. With particle-specific
properties introduced, one would also have to introduce new properties for visualisation. The
simplest such would be to draw inspiration from the way fluids are currently visualized in
LapSim. Each particle would be assigned its own colour, depending on what type of fluid it
represents. When multiple fluids are found in the same spot, their relative concentrations
could be used to blend their colours.

6.2.9 Transfer of Properties
After implementing particle-specific properties, this can be taken one step further by
implementing explicit dilution of fluids. This would mean interpolating properties between
interacting particles over time. Consider a particle system containing water particles and
blood particles. As they interact, the denser blood becomes watered out and washes away. A
drawback of this method is that it makes it impossible for diluted particles to shift again later,
as they may do in real life. Finally, during our experiments with particle-specific properties,
the desired effects were found to occur even without this modification. Our experiments
showed that as long as one uses a sufficient number of particles, the large-scale interaction
will resemble the natural dilution which we wanted to achieve. This means we will get the
intended effect without having to continuously change the properties of individual particles.

6.2.10 Coagulation
Another feature which was considered is that of coagulation. This effect is of particular
interest for surgical simulations and could be handled by a continuous shift in particle
properties. The rate of this shift would most likely be inversely proportional to the velocity of
the particles. This way, moving particles require more time to coagulate and blood would stay
fluid until it came to a near halt, much like in real life. Combining this with transfer of
properties, water could be made to dissolve the coagulated particles, restoring their original
properties. However, coagulation does not mix well with the more general dilution described
above, as this would produce particles which are a mix of water and blood. If these are
allowed to coagulate, we are in effect allowing water to coagulate. If, on the other hand, they
are not allowed to coagulate, blood which has been in contact with water will not coagulate.
This may be seen as another argument against the transfer of properties between particles.

GPU Based Liquids and Surface Effects
Daniel Kvick 46

7 References
1: T. Harada, S. Koshizuka, Y. Kawaguchi. "Smoothed Particle Hydrodynamics on GPUs", Proc. of Computer
Graphics International, pp. 63-70, 2007
2: J. Lombardo. "Real-time Collision Detection for Virtual Surgery", Proceedings Computer Animation, pp. 26-
28, 1999
3: C. Langelotz, M. Kilian, C. Paul and W. Schwenk. "LapSim virtual reality laparoscopic simulator reflects
clinical experience in German surgeons", Langenbeck's Archives of Surgery, Volume 390, Number 6, pp. 534-
537, 2005
4: W. Jin et al. "Improving the Visual Realism of Virtual Surgery", Stud Health Technol Inform. 111, pp. 227-
233, 2005
5: J.R. Cannon. "The One-Dimensional Heat Equation", Cambridge University Press, 1984
6: M. Müller et al. "Particle-Based Fluid Simulation for Interactive Applications", Proceedings of
SIGGRAPH/Eurographics, pp. 154-159, 2003
7: RealFlow [http://www.realflow.com], 2011
8: J.H. Ferziger and M. Peric. "Computational Methods for Fluid Dynamics", Springer, pp. 12-13, 1995
9: H. M. Schey. "DIV, Grad, Curl, & All That: An Informal Text on Vector Calculus", W.W. Norton & Com-
pany, 1997
10: D. J. Price. "Smoothed Particle Hydrodynamics and Magnetohydrodynamics", arXiv:1012.1885, 2010
11: S. Chen and G. D. Doolen. "Lattice Boltzmann Method for Fluid Flows", Annual Review of Fluid Mechanics
Vol. 30, 329-364, 1998
12: Robert Bridson. "Fluid Simulation for Computer Graphics", A K Peters, 2008
13: J. Sanders, E. Dandrot. "CUDA by Example", Addison-Wesley, pp. 5-7, 2010
14: D. Kirk, W. Hwu. "Programming Massively Parallel Processors", Morgan Kaufmann, pp. 3-42, 2009
15: T. Akenine-Möller, E. Haines and N. Hoffman. "Real-Time Rendering", A K Peters, pp. 11-45, 2008
16: J. Yang and J. McKee. "Real-Time Order Independent Transparency and Indirect Illumination using Dir-
ect3D 11", Proceedings of SIGGRAPH, 2010
17: NVIDIA. "EXT_shader_image_load_store", 2010
18: B. Stroustrup. "The C++ Programming Language - Special Edition", Addison-Wesley, pp. 8-9, 2008
19: OpenGL [http://www.opengl.org], 2011
20: PhysX [http://www.nvidia.com/object/physx_new.html],
21: M. W. Jones, J. A. Bærentzen, M. Sramek. "3D Distance Fields: A Survey of Techniques and Applications",
IEEE Transactions on Visualization and Computer Graphics, Volume 12, Issue 4, pp. 581-599, 2006
22: Clay Mathematics Institute [http://www.claymath.org/millennium], 2011
23: Clavet et. al. "Particle-based Viscoelastic Fluid Simulation", Symposium on Computer Animation, 219-228,
2005
24: C. Oat, J. Barczak, J. Shopf. "Efficient Spatial Binning on the GPU", AMD Technical Report, 2009
25: S. Lefebvre and H. Hoppe. "Perfect Spatial Hashing", ACM Transactions on Graphics, Volume: 25, Issue: 3,
579-588, 2006
26: T. Kaneko et al. "Detailed Shape Representation with Parallax Mapping", Proceedings of ICAT, pp. 205-
208, 2001

GPU Based Liquids and Surface Effects
Daniel Kvick 47

	Abstract
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.2.1 Burn marks
	1.2.2 Fluid Simulation

	2 Previous Work
	2.1 Cauterization
	2.1.1 Heat Equation

	2.2 Fluid Simulation
	2.3 Navier-Stokes Equations
	2.3.1 Mathematical Background
	2.3.2 Assumptions
	2.3.3 Motivating the Equations

	2.4 Eulerian Grid-Based
	2.5 Smoothed Particle Hydrodynamics
	2.6 Lattice-Boltzmann
	2.7 Graphics Hardware
	2.7.1 Programmable Stages
	2.7.2 Floating-point Textures
	2.7.3 Atomic Operations

	3 Analysis
	3.1 Method
	3.1.1 Alternatives
	3.1.2 Quick Tests
	3.1.3 CPU – GPU Transitions
	3.1.4 Results

	3.2 Tools and Languages
	3.2.1 C++
	3.2.2 OpenGL
	3.2.3 GLSL
	3.2.4 CUDA
	3.2.5 PhysX

	3.3 Cauterization
	3.3.1 Current Solution
	3.3.2 Distance Field
	3.3.3 Burn level
	3.3.4 Temperature
	3.3.5 Smoothing Issues

	3.4 Fluid Simulation
	3.4.1 Current Solution
	3.4.2 Naïve Solutions
	3.4.3 Fluid Dynamics
	3.4.4 Smoothed Particle Hydrodynamics

	3.5 Viscoelastic Fluid
	3.5.1 Hashing of Particles
	3.5.2 Simple Particle Steps
	3.5.3 Application of Viscosity
	3.5.4 Double Density Relaxation

	3.6 GPU Implementation
	3.6.1 Workflow
	3.6.2 Data Representation
	3.6.3 Vertex Shader
	3.6.4 Neighbourhood Search
	3.6.5 Particle Creation
	3.6.6 Differences between Implementations

	3.7 Hashing
	3.7.1 Spatial Binning
	3.7.2 Linked List Hashing

	3.8 Surface Projection
	3.8.1 Coordinate system
	3.8.2 Texturing
	3.8.3 Gravity

	3.9 Particle Visualisation
	3.9.1 Marching Squares
	3.9.2 Position Smoothing
	3.9.3 Hash Position vs. Real Position

	4 Results
	4.1 Realism
	4.1.1 Cauterization
	4.1.2 Fluid Simulation

	4.2 Performance
	4.2.1 Performance Measurements
	4.2.2 GPU vs. CPU
	4.2.3 Buffer Size
	4.2.4 Particle Spawning
	4.2.5 Density

	5 Discussion
	5.1 Cauterization
	5.1.1 Shader Implementation
	5.1.2 Texture Facilities
	5.1.3 Temperature Modelling

	5.2 Fluid Simulation
	5.2.1 Theoretical Models
	5.2.2 Modification of Algorithms
	5.2.3 Graphics Programming
	5.2.4 Visualisation and Surface Projection

	5.3 Utility Libraries
	5.3.1 Level of Abstraction
	5.3.2 Design Process

	6 Future Work
	6.1 Cauterization
	6.1.1 Heat equation
	6.1.2 Smoothing Issues

	6.2 Fluid Simulation
	6.2.1 Particle Lifetime
	6.2.2 Adaptive Texture Mapping
	6.2.3 Three-Dimensional Particles
	6.2.4 Collision detection
	6.2.5 Geometry Discontinuities
	6.2.6 Obstacle Map
	6.2.7 Improved Visualisation
	6.2.8 Particle-specific Properties
	6.2.9 Transfer of Properties
	6.2.10 Coagulation

	7 References

